Tut 1: Direction Field and a Recap of Sec. 2.1
YUAN CHEN]]

Department of Mathematics

There are two parts in this tutorial note. In this first part, I will introduce the direction field.
And in the second, I will recap the the contents of section 2.1 in the lecture notes. In this whole

note, I use x as independent variable instead of t.

1 Direction Field

Direction fields are valuable tools in studying qualitative properties of solutions to first order
ordinary differential equation (ODE)

Y~ F(ry), )
it is especially useful when you can not solve the equation. Now suppose you already have
a solution curve for the ODE which runs through the point (zg,yo), then F(xg,yo) should be
the slope of the curve at (z¢,yo) by the equation. This is key point of direction field. In the

following, I will use specific examples to show you the meaning of direction fields.

Example 1. Motion of falling object:

d

d—yzg—ﬁ with ¢=9.8 and ~/m =1/5. (2)
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The above graph with these short lines is called a graph of the direction field to the dif-
ferential equation . But why do we care about the direction field? Indeed, there are two

reasons:
(a) Sketch of the solution curves. See these blue curve lines in the above picture.
(b) Long time behaviour.

Note that y = 49 is a solution to which is independent of variable z, henceforth we call
such solution an equilibrium solution. By sketching the solution curves, we know that as x

increase,

e if initial data y, > 49, it looks like all the solutions will decrease and approach to the

equilibrium solution y = 49.

o if initial data y, < 49, it looks like all the solutions will increase and approach to the

equilibrium solution y = 49.
Hence, no matter how initial data varies, the solution will always approach the equilibrium
solution y = 49, therefore we call it a globally asymptotically stable solution.
Example 2. Population dynamics:

dy _

o ry(1 —y/K) with 7 = 0.5. (3)

In this case, we have two equilibrium solutions:
y1 =0 and Yo = K.

By scaling, we take
K = 100.

Then the graph of direction field is:
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From this graph,

Table 1: Population dynamics

Initial data yo | o > 100 Yo =100 | 0<yo <100 | yo= Yo <0
as x — +0 | y(x) — 100 | y(x) =100 | y(z) — 100 |y(z) =0 | y(z) - —©

Thus as x goes to +00, for each yy > 0 the solution approaches the equilibrium solution y, = 100.
Therefore we say that the equilibrium solution y, = 100 is an asymptotically stable solu-
tion of equation (note that it is not globally stable). On the contrary, y; = 0 is called an
unstable equilibrium solution since the solution will go away from it even solution start
Very near zero.

In general, we call an equilibrium solution to a differential equation ”asymptotically stable”
if any solution start near the equilibrium solution approaches the equilibrium as x goes to
infinity. Otherwise, it is called "unstable”.

In the following example, we concern about a first order non-autonomous ODE.

Example 3.
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There is no equilibrium solution for this equation. As x goes to +oo, the solution will diverge

to +oo if the initial data is larger than —1, and diverge to —oo on the contrary.

2 Two Linear ODE Examples

The general form of an first order linear ODE is

Yt by = ale). 9

Example 1: If p = py, ¢ = qo for some constants pg, g € R, then the linear ODE leads to an
autonomous, linear ODE

dy
ar + PoY = qo,
X

y(O) = Yo-

Sol: We consider the equation by two cases.
Case 1: If pg = 0, then

dy

= =qq. 7

dx 0 (7)
It is clear that

Y = Yo + qo.

Case 2: If py # 0, then

4o
dr DYt do=—Po (y——>.
xr Po

4



If yo = qo/po, then the solution is
Y = qo/Po-
Otherwise we admit y(z) # qo/po for any = (Try to prove it by contradiction argument). Hence

1 dy

dy_ 8
y—qo/podr P (8)

which furthermore implies

by chain rule. Hence for some constant ¢ € R, there holds that

y—@ = —pPoT + C.

Do

In

Taking exponential implies the general solution
— —pT q 4 __ C c
y=~re P+ = with k=e€"or —e".
By the initial condition, one have

/-@zyo—@, and y = (yo—@>e_p0x+@.
Do Do Do

In conclusion,

Yo + 4o, it po=0;
y = (9)
(yo - C]_o) e Pt 4 @, it po # 0.
Po Po

Example 2: If ¢ = 0, then we consider

dy

y(0) = vo.
Sol: If yp = 0, then y = 0 is the solution. Otherwise rewriting the equation as
d ldy

—lInly| =

- —p()

ydr

then the general solution can be represented as

s o ([t m

for some constants x € R. By the initial condition,

Y = o exp (— fp(fﬁ) dﬂf) :
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